Exploiting GPUs in Solving (Distributed) Constraint Optimization Problems with Dynamic Programming
نویسندگان
چکیده
This paper proposes the design and implementation of a dynamic programming based algorithm for (distributed) constraint optimization, which exploits modern massively parallel architectures, such as those found in modern Graphical Processing Units (GPUs). The paper studies the proposed algorithm in both centralized and distributed optimization contexts. The experimental analysis, performed on unstructured and structured graphs, shows the advantages of employing GPUs, resulting in enhanced performances and scalability.
منابع مشابه
A dynamic programming approach for solving nonlinear knapsack problems
Nonlinear Knapsack Problems (NKP) are the alternative formulation for the multiple-choice knapsack problems. A powerful approach for solving NKP is dynamic programming which may obtain the global op-timal solution even in the case of discrete solution space for these problems. Despite the power of this solu-tion approach, it computationally performs very slowly when the solution space of the pr...
متن کاملA Dynamic Programming-Based MCMC Framework for Solving DCOPs with GPUs
The field of Distributed Constraint Optimization (DCOP) has gained momentum in recent years, thanks to its ability to address various applications related to multi-agent coordination. Nevertheless, solving DCOPs is computationally challenging. Thus, in large scale, complex applications, incomplete DCOP algorithms are necessary. Recently, researchers have introduced a promising class of incomple...
متن کاملImplementing Dynamic Programming Recurrences in Constraint Handling Rules with Rule Priorities
Dynamic Programming (DP) is an important technique used in solving optimization problems. A close correspondence between DP recurrences and Constraint Handling Rules with rule priorities (CHR) yields natural implementations of DP problems in CHR. In this work, we evaluate different implementation techniques with respect to their runtime. From our results we derive a set of guidelines for implem...
متن کاملDistributed Configuration as Distributed Dynamic Constraint Satisfaction
Dynamic constraint satisfaction problem (DCSP) solving is one of the most important methods for solving various kinds of synthesis tasks, such as configuration. Todays configurators are standalone systems not supporting distributed configuration problem solving functionality. However, supply chain integration of configurable products requires the integration of configuration systems of differen...
متن کاملAn approach to Improve Particle Swarm Optimization Algorithm Using CUDA
The time consumption in solving computationally heavy problems has always been a concern for computer programmers. Due to simplicity of its implementation, the PSO (Particle Swarm Optimization) is a suitable meta-heuristic algorithm for solving computationally heavy problems. However, despite the simplicity, the algorithm is inefficient for solving real computationally heavy problems but the pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015